Invariant Polynomials and Minimal Zero Sequences

نویسندگان

  • Bryson W. Finklea
  • Terri Moore
  • Vadim Ponomarenko
  • Zachary J. Turner
چکیده

A connection is developed between polynomials invariant under abelian permutation of their variables and minimal zero sequences in a finite abelian group. This connection is exploited to count the number of minimal invariant polynomials for various abelian groups.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combinatorial Approaches to Minimal Zero Sequences of Finite Abelian Groups, and a Surprising Connection

This paper presents a fresh new combinatorial approach to the study of minimal zero sequences of a finite abelian group. We begin by presenting some general algebraic theory aimed at reducing the search space of potential minimal zero sequences for a certain class of groups, as well as describe the optimal algorithm for generating all minimal zero sequences of such a group. We continue by givin...

متن کامل

Hermite Polynomials And Helicoidal Minimal Surfaces

The main objective of this paper is to construct smooth 1-parameter families of embedded minimal surfaces in euclidean space that are invariant under a screw motion and are asymptotic to the helicoid. Some of these families are significant because they generalize the screw motion invariant helicoid with handles and thus suggest a pathway to the construction of higher genus helicoids. As a bypro...

متن کامل

Bézout Identities Associated to a Finite Sequence

We consider finite sequences s ∈ D n where D is a commutative, unital, integral domain. We prove three sets of identities (possibly with repetitions), each involving 2n polynomials associated to s. The right-hand side of these identities is a recursively-defined (non-zero) 'product-of-discrepancies'. There are implied iterative algorithms (of quadratic complexity) for the left-hand side coeffic...

متن کامل

Products of Polynomials in Uniform Norms

We study inequalities connecting a product of uniform norms of polynomials with the norm of their product. This subject includes the well known Gel’fond-Mahler inequalities for the unit disk and Kneser inequality for the segment [−1, 1]. Using tools of complex analysis and potential theory, we prove a sharp inequality for norms of products of algebraic polynomials over an arbitrary compact set ...

متن کامل

Integral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant

Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005